
Hartree-Fock-Roothan Self-Consistent Field Method

1. Helium

Here is a summary of the derivation of the Hartree-Fock equations presented in class.First
consider the ground state ofHe and start with with a variational trial wav e-function written as a
product of 1-electron orbitals,φ (i); that is

Ψ(1, 2)= φα (1)φ β (2), (1)

where the orbitals,φα /β , (called Fock orbitals) are unknown. For notational simplicity only, we
assume that they are real but not necessarily normalized, and use "1" and "2" to denote the coor-
dinates of electron 1 or 2.We also added a subscript to each of the orbitals, as that extra bit of
notation will be useful later when considering multi-electron atoms.

The energy bound corresponding to Eq. (1), as usual, is

E[φ ] = ∫ d(1)d(2)φα (1)φ β (2)Hφα (1)φ β (2)

∫ d(1)d(2) |φα (1)|2|φ β (2)|2
, (2)

wered(i) denotes an integration over the position and possibly electronic spin coordinates of par-
ticle i . At this point, assume we have the orbital functions and consider how E[φ ] changes under
an arbitrary change in the orbital functions, that is we let

φα (1) → φα (1) + δ φα (1), (3)

etc., whereδ φα (1) is an arbitrary, small, function. By using this in Eq. (2), we have

E[φ + δ φ ] = ∫ d(1)d(2) [φα (1) + δ φα (1)][φ β (2) + δ φ β (2)]H [φα (1) + δ φα (1)][φ β (2) + δ φ β (2)]

∫ d(1)d(2) |φα (1) + δ φα (1)|2|φ β (2) + δ φ β (2)|2
.(4)

We now expand all the products and discard all the terms that have quadratic or higher powers in
theδ φ ’s. This gives

δ E ≡ E[φ + δ φ ] − E[φ ] =



∫ d(1)d(2)δ φα (1)φ β (2)Hφα (1)φ β (2) + φα (1)δ φ β (2)Hφα (1)φ β (2)

+φα (1)φ β (2)Hδ φα (1)φ β (2) + φα (1)φ β (2)Hφα (1)δ φ β (2)

−2E[φ ] ∫ φα (1)δ φα (1)|φ β (2)|2 + |φα (1)|2φ β (2)δ φ β (2)




÷ ∫ d(1)d(2) |φα (1)|2|φ β (2)|2, (5)
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where we have moved the first-order terms from the denominator by noting that

1

A + δ A
=

1

A
−

δ A

A2
+

δ A2

A3
− .... (6)

We can rewrite Eq. (5) by using the fact thatH is Hermitian in the 3rd and 4th terms to move H
onto the factors to its right. This just gives the first two terms and thus:

δ E =

2



∫ d(1)d(2)δ φα (1)φ β (2)(H − E[φ ])φα (1)φ β (2) + φα (1)δ φ β (2)(H − E[φ ])φα (1)φ β (2)





∫ d(1)d(2) |φα (1)|2|φ β (2)|2
.

(7)

Since we are looking for the orbitals that minimize the variational bound, a necessary condition
is thatδ E, being linear in theδ φ ’s, must vanish for arbitraryδ φ (at least arbitrary smallδ φ ’s).
From Eq. (7) we see that this requires that

∫ dr2 φ β (2)(H − E[φ ])φα (1)φ β (2) = 0, (8)

where notice that we have dropped one of the integrations. Ansimilar equation is obtained for
φ β (2).

In order to proceed further, we hav e to consider the explicit form of the Hamiltonian,
which for helium is just

H = H1 + H2 +
1

r12
, (9)

in atomic units, where

Hi ≡ −
1

2
∇2

i −
Z

r i
(10)

is the Hamiltonian for the noninteracting electrons (i.e., of a singly ionized helium atom (Z=2)).
In addition, we now assume that the individual orbital functions are normalized.We can thus re-
write Eq. (8) as

[H1 + Ueff
β (1)]φα (1) = εα φα (1), (11)

where

Ueff
β (1) ≡ ∫ d(2)

|φ β (2)|2

r12
(12)

and

εα ≡ E[φ ] − I β , (13)

with

I β ≡ ∫ d(2)φ *
β (2)H2φ β (2). (14)
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Equation (11) is known as the Hartree-Fock equation, and it’s solution will give the lowest
energy bound possible with an orbital form for the two-electron wav e-function, i.e., with Eq. (1).
It is very similar to the one-electron Schrodinger equations we have considered before, with one
important difference. Noticehow the electron-electron repulsion term appears inUeff

β (1). Since
|φ β (2)|2 is the probability density for finding electron 2 at a given position, Eq. (12) gives the
av erage electron-electron repulsion for a fixed position of electron 1. In this sense, the orbital
assumption is referred to as amean-fieldapproximation and neglects correlations between the
actual positions of the electrons.

In addition to the errors associated with the orbital assumption, the Hartree-Fock equations
are considerably more difficult to solve that the usual one-electron problems we’ve encountered
since the effective potential depends on the solution.What is done in practice is to choose a
form for the orbitals, e.g., by using a hydrogenic 1s orbital, calculating the effective potentials,
and solving the resulting one electron problem. The orbitals thus obtained are then used to recal-
culate the effective potentials and the entire procedure is repeated until self-consistency is
obtained.

The eigenvaluesεα are called theorbital energies. There are many ways in which the total
energy of the atom can be expressed in terms of the orbital energies, e.g.,

E[φ ] = εα + I β , (15)

cf. Eq. (13). Another, equivalent, expression can be obtained by using Eqs. (9), (10) directly in
Eq. (2), namely

E[φ ] = Iα + I β + Jα ,β , (16)

where the I’s are given by Eq. (14) and

Jα ,β ≡ ∫ d(1)d(2)
|φα (1)|2|φ β (2)|2

r12
= ∫ d(1)φ *

α (1)Ueff
β (1)φα (1) (17)

is called a Coulomb integral (and is just the mean electron-electron repulsion energy in the
orbital approximation). By using Eq. (11) it follows that εα = I1 + Jα ,β , which implies that
εα + ε β ≠ E[φ ], cf. Eq. (16)!

Notice that to the extent that the orbitals are close to those of the helium ion, the integrals
Iα (β ) are approximately the corresponding energies of the ion in stateα (β ). To the extent that
this is true, Eq. (13) shows that

EHe+ − EHe ≈ −εα (18)

which is known as Koopmans’ theorem. This can be extended to other problems and is useful in
estimating the ionization energy in cases where the energy of the ion is not well known.

The Hartree-Fock equations give E[φ ] = −2. 8617au compared with an exact answer of
−2. 9037au which is correct to 1.4%. The remaining -0.0420au of energy is known as the corre-
lation energy and is equivalent to 110.24 kJ/mol which is about 25% of the energy in a C-H
bond. Thus,as good as the orbital approximation is, one still often needs more accuracy for
many applications.
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2. Beyond Helium

We were able to ignore spin and the anti-symmetry of the wav e-function for helium
because we account for all of that in the spin wav e-function (essentially by having an antisym-
metric spin wav e-function corresponding to one spin up and one spin down). Mattersare more
complicated for the rest of the periodic table. As was mentioned when we introduced spin and
the symmetry requirements of the wav e-function an elegant way to account for this is by writing
the wav e-function as aSlater determinant; namely,

Ψ(1, 2, . . . ,N) =
1

√ N!










u1(1)

u2(1)

⋅
⋅
⋅

uN(1)

u1(2)

u2(2)

⋅
⋅
⋅

uN(2)

⋅
⋅
⋅
⋅
⋅
⋅

u1(N)

u2(N)

⋅
⋅
⋅

uN(N)










, (19)

were theui are the orbital functions, including spin. The factor of 1/√ N! is the normalization
constant assuming that the individual orbital functions are all normalized.By using the proper-
ties of determinants, it is easy to see that the Slater determinant changes sign if we interchange
the particle labels on any pair of particles (i.e., this corresponds to interchanging two columns of
the determinant) and vanishes if any pair of orbitals,ui andu j , are the same (i.e., the determinant
will have two equal rows). Thislast property is just the Pauli exclusion principle.

As an example, consider helium; according to Eq. (19)

Ψ(1, 2)=
1

√2
[u1(1)u2(2) − u2(1)u1(2)], (20)

which is obviously anti-symmetric. In addition, if we writeu1(i) = φ (i)|↑ >i and
u2(i) = φ (i)|↓ >i , where |↑ >i and |↓ >i are the spin wav efunctions corresponding to a spin up
and spin down state for electroni†, Eq. (20) becomes

Ψ(1, 2)= φ (r1)φ (r2)
|↑ >1 |↓ >2 −|↑ >2 |↓ >1

√2
(21)

which is equivalent to what we used above (for the ground state of He).

For atoms with more than two electrons, the Pauli exclusion principle requires that some of
the space parts of the orbital functions be different. For example, for a closed shell atom contain-
ing 2N spin-paired electrons, we could write

Ψ(1, 2, . . . , 2N) =
1

√ 2N!












φ1(r1)|↑ >1

φ1(r1)|↓ >1

⋅
⋅
⋅

φ N(r1)|↑ >1

φ N(r1)|↓ >1

φ1(r2)|↑ >2

φ1(r2)|↓ >2

⋅
⋅
⋅

φ N(r2)|↑ >2

φ N(r2)|↓ >2

⋅
⋅
⋅
⋅
⋅
⋅
⋅

φ1(r2N)|↑ >2N

φ1(r2N)|↓ >2N

⋅
⋅
⋅

φ N(r2N)|↑ >2N

φ N(r2N)|↓ >2N












, (22)

†McQuarrie usesα (i) andβ (i) to denote the spin up and spin down states.
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which corresponds to an electronic configuration in which each of theN orbitals is doubly occu-
pied. For non-closed shell atoms, one typically uses a linear combination of Slater determinants
corresponding to the possible electronic configurations consistent with the exclusion principle
and with coefficients that are chosen to minimize the trial function’s energy as usual.

In order to compute the trial function’s energy, we need to be able to write out a general
determinant, namely, for a matrixM

det(M) =
i , j ,k,...
Σ ε i , j ,k,...Mi ,1M j ,2Mk,3. . . ,  (23)

whereε i , j ,k,... is zero if any of the indices are the same, +1 if the indices can be obtained from an
ev en number of permutations of 1,2,3... and -1 otherwise.You may have seen this in your linear
algebra course, but if not, you needn’t worry; you’re not responsible for this part of the deriva-
tion. A nice exercise in combinatorics is to use Eq. (23) to obtain the normalization constant
used for the Slater determinants.

Now the Hamiltonian for a multi-electron atom is just

H =
i
Σ Hi +

i< j
Σ 1

r i , j
, (24)

where

Hi ≡ −
1

2
∇2

i −
Z

r i
, (25)

cf. Eq. (10).

When a Slater determinant is used to compute the energy bound, Eqs. (19) and (23) can be
used to show that

E[φ ] =
N

i=1
Σ 2I i +

N

1
i , j
Σ(2Ji , j − Ki , j ), (26)

where

I i ≡ ∫ dr1 φ *
i (r1)H1φ i (r1), (27a)

Ji , j ≡ ∫ dr1dr2 φ *
i (r1)φ *

j (r2)
1

r12
φ i (r1)φ j (r2), (27b)

and

Ki , j ≡ ∫ dr1dr1 φ *
i (r1)φ *

j (r2)
1

r12
φ i (r2)φ j (r1). (27c)

The first two integrals are the same as encountered above, cf. Eqs. (14) and (17). The last one is
new and is called anexchange integral. Note that in the case where the orbital functions are the
same,Ki , j = Ji , j and the contribution to the energy bound is identical to what was found for
helium.

Finally, if we vary the orbital functions as we did for helium and set the first order varia-
tion to zero, we obtain the following equations:
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Fiφ i (ri ) = ε iφ i (ri ), i = 1, . . . ,N (28)

where

Fi ≡ −
1

2
∇2

i −
Z

r i
+

j
Σ(2J j − K j ) (29)

with

J jφ i (r1) ≡ φ i (ri ) ∫ dr2 φ *
j (r2)

1

r12
φ j (r2) (30)

and

K jφ i (r1) ≡ φ j (r1) ∫ dr2φ *
j (r2)

1

r12
φ i (r2), (31)

F is known as the Fock operator.

Equations (28)−(31) generalize the Hartree-Fock equations obtained for helium above.
They suffer from the same problem, namely, they are self-consistent equations, and the effective
potential terms require us to know the orbitals.As with helium, this is dealt with iteratively. In
practice, the Fock orbitals are expressed as linear combinations of Slater orbitals, with adjustable
coefficients and exponential parameters which are then determined variationally. This scheme
was dev eloped by Roothan, and hence, the method is sometimes called the Hartree-Fock-
Roothan method.

From McQuarrie, Quantum Chemistry, p 310.
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