Hartree-Fock-Roothan Self-Consistent Field M ethod

1. Helium

Here is a summary of the deaiion of the Hartree-6ck equations presented in clagstst
consider the ground state He and start with with a variational trialavefunction written as a
product of 1-electron orbitalg(i); that is

W(1,2)= ¢, (D)es(2), (1)

where the orbitalsg,,;, (called Fock orbitals) are unkwa. For notational simplicity onlywe
assume that tlyeare real lit not necessarily normalized, and use "1" and "2" to denote the coor
dinates of electron 1 or 2Me dso added a subscript to each of the orbitals, as that extra bit of
notation will be useful later when considering multi-electron atoms.

The energy bound corresponding to Eqg. (1), as usual, is
£l fd(l)d(Z) 92 (1)ep(2)H 9, (1)95(2)
w =

I d(1)d(2) ke, (1)Fles(2)P

wered(i) denotes an integratiorver the position and possibly electronic spin coordinates of par
ticlei. At this point, assume we V&athe orbital functions and considernhd[¢] changes under
an arbitrary change in the orbital functions, that is we let

92(1) - 9,(1) + 09,(1), 3
etc., wheredg, (1) is an arbitrarysamall, function. By using this in Eq. (2), weve
J’ d(1)d(2) [¢(1) + 50, (D1l9s(2) + 695(2)IH @, (1) + S, (1] 9(2) + 5%(2)]/4)
[ d@Wd@) ks (1) + 50, (1)Ples(2) + 505(2)P i

We row expand all the products and discard all the terms that faadratic or higher powers in
thedg's. This gives

@)

Elp+dg] =

[
OE =E[p+3d¢] - E[¢] = g]’ d(1)d(2) 09, (1)@s(2)H ¢, (1)5(2) + 9, (1) 95(2)H ¢, (1)p5(2)
+0,(1)ps(2)H 39, (1)@s(2) + 9, (1)@s(2)H ¢, (1) 95(2)

0
~2E[4l [ 2. (130, (Dlps(2)F + |§0a(1)|2¢’[3(2)5(ﬂﬁ(2)g

+_[ d(1)d(2) ks (1)Fles(2F, ®)
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where we hee noved the first-order terms from the denominator by noting that

1 _1 oA, IA° )
A+9o A A A2 A3
We @an rewrite Eq. (5) by using the fact thitis Hermitian in the 3rd and 4th terms tovadd
onto the factors to its right. This justvgs the first two terms and thus:

0 0
20[ d(1)d(2) ¢, (1)@s(2)(H - E[¢]) 9, (L)95(2) + 9, (1) 95(2)(H — E[¢]) ¢, (1)@s(2)0
OE = 0

I d(1)d(2) lpa (1)Fles(2)F
(7)

Since we are looking for the orbitals that minimize thaational bound, a necessary condition
is thatdoE, being linear in the&dg's, must vanish for arbitrarg ¢ (at least arbitrary smaflg's).
From Eq. (7) we see that this requires that

J’drz 95(2)(H — E[¢]) 9, (1)e5(2) = 0, (8)
where notice that we ki@ dopped one of the inggations. Ansimilar equation is obtained for
(ﬂ/}(z)-

In order to proceed furthewe haveto consider the explicit form of the Hamiltonian,
which for helium is just

1
H=H;+H,+— )
ro
in atomic units, where
1 Z
Hi=--02-= 10
I 2 ] rl ( )

is the Hamiltonian for the noninteracting electrons (i.e., of a singly ionized helium atom (Z=2)).
In addition, we nov assume that the indidual orbital functions are normalizedlVe an thus re-
write EqQ. (8) as

[H1+U5 (D]e(1) = £,0,(1), (11)
where
o= a2 |¢g(2)|2 w2
and
£q = E[g] =14, 13)
with
l5 = J’ d(2) g5(2)H,9,(2). (14)
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Equation (11) is knen as the Hartree-Fock equation, ansl sslution will give the lovest
enegy bound possible with an orbital form for the two-electr@ave&function, i.e., with Eq. (1).
It is very similar to the one-electron Schrodinger equations we dmasidered before, with one
important diference. Noticdnow the electron-electron repulsion term appeat@jﬁ(l). Since
|¢/3(2)|2 is the probability density for finding electron 2 at gegiposition, Eq. (12) gies the
avaage electron-electron repulsion for aefixposition of electron 1. In this sense, the orbital
assumption is referred to asheean-fieldapproximation and neglects correlations between the
actual positions of the electrons.

In addition to the errors associated with the orbital assumption, the Hartree-Fock equations
are considerably more difficult to selthat the usual one-electron problemswegeincountered
since the déctive potential depends on the solutiokVhat is done in practice is to choose a
form for the orbitals, e.g., by using gdnogenic 1s orbital, calculating thefesftive potentials,
and solving the resulting one electron problem. The orbitals thus obtained are then used to recal-
culate the déctive potentials and the entire procedure is repeated until self-consgisienc
obtained.

The eigemaluese, are called therbital enegies There are manways in which the total
energy of the atom can be expressed in terms of the orbital energies, e.g.,

Elg] =0 + 14, (15)

cf. Eqg. (13). Another equivalent, expression can be obtained by using Egs. (9), (10) directly in
Eq. (2), namely

Elg) = 1o 415+ o )
where the B ae given by K. (14) and
DPjo,(2 o
30 = [ @ AL ¢y szt a7

is called a Coulomb integral (and is just the mean electron-electron repulsigy @nd¢he
orbital approximation). By using Eg. (11) it fols thate, =1, +J, 5, which implies that
eq + €5 % E[g], cf. Eq. (16)!

Notice that to the extent that the orbitals are close to those of the helium ion, dinalsnte
lo(p) @re approximately the corresponding energies of the ion ina(ale To the extent that
this is true, Eq. (13) shows that

Ever ~Ene = —€4 (18)

which is known as Koopmans’ theorem. This caniereded to other problems and is useful in
estimating the ionization energy in cases where the energy of the ion is not well known.

The Hartree-Fock equationsvgiE[¢] = —2. 8617au compared with an exact answer of
—2.9037au which is correct to 1.4%. The remaining -0.0420au of energy ks the corre-
lation energy and is equent to 110.24 kJ/mol which is about 25% of the gpen a C-H
bond. Thusas good as the orbital approximation is, one still often needs more acéorac
mary applications.
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2. Beyond Helium

We were able to ignore spin and the anti-symmetry of tl@efunction for helium
because we account for all of that in the spavefunction (essentially by wang an antisym-
metric spin vavefunction corresponding to one spin up and one spiwnglo Mattersare more
complicated for the rest of the periodic table. As was mentioned when we introduced spin and
the symmetry requirements of thawefunction an elgant way to account for this is by writing
the wavefunction as &later determinannamely,

Oui(1) u(2) O u(N) O
Buz(l) ux(2) O Uz(N)B
1lpgB 0O 0O Og
vNI OO O 0O 0O »d
O O
0 O o 0O O 0
Oun() un(@) O un(N)O
were theu; are the orbital functions, including spin. The factor 6fN! is the normalization
constant assuming that the individual orbital functions are all normalBgdising the proper
ties of determinants, it is easy to see that the Slater determinant changes sign if we interchange
the particle labels on grpair of particles (i.e., this corresponds to interchangirgdvlumns of

the determinant) and vanishes ifyauair of orbitals,u; andu;, are the same (i.e., the determinant
will have wo equal raws). Thislast property is just the Pauli exclusion principle.

As an example, consider helium; according to Eq. (19)

W(,2,...N)= (19)

w1, 2)= ?/iz [u1(D)ux(2) = uz(1)ue (2)], (20)

which is obviously anti-symmetric. In addition, if we write(i) =¢(i)|t > and
u,(i) = ¢(i)|l >;, where { > and } >; are the spin avefunctions corresponding to a spin up
and spin down state for electron Eq. (20) becomes

[t >1 |8 >t > [1 >

W(1,2)= plr)elro) =

which is equialent to what we used abe (for the ground state of He).

For atoms with more than tavdectrons, the Pauli exclusion principle requires that some of
the space parts of the orbital functions bédent. For example, for a closed shell atom contain-
ing 2N spin-paired electrons, we could write

(21)

Doi(r)lt 1 @u(ra)lt > 0 @u(ran)lt >on U

O@r)lk >0 el > O euron)lb >on

1 Il U 0 l U l
wa,z,...,mpﬁﬂ 0 0 0 O EI (22)

0 il 0 l U B

Uon(rolt > on(r2)lt > 0 on(ran)lt >2NE

Oen(r)ll >0 o)l > O on(ran)ll >an g

"McQuarrie uses (i) and B(i) to denote the spin up and spin down states.
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which corresponds to an electronic configuration in which each df thibitals is doubly occu-

pied. For non-closed shell atoms, one typically uses a linear combination of Slater determinants
corresponding to the possible electronic configurations consistent with the exclusion principle
and with coefficients that are chosen to minimize the trial funsten@rgy as usual.

In order to compute the trial functi@aé&ergy we reed to be able to write out a general
determinant, namelyor a matrixMm

det(M) = . zk Ei’j'k""Miyle,sz,S. Cay (23)
ij.k,...

wheres' % is zero if ay of the indices are the same, +1 if the indices can be obtained from an

even number of permutations of 1,2,3... and -1 otherwigeu may hare sen this in your linear
algebra course, but if not, you neddnbrry; you're not responsible for this part of the deri

tion. A nice ercise in combinatorics is to use Eg. (23) to obtain the normalization constant
used for the Slater determinants.

Now the Hamiltonian for a multi-electron atom is just
1

H=SH+5 = 24
| 1<) 'i,j
where
__1 2_Z
== o (25)
cf. Eqg. (10).

When a Slater determinant is used to compute thgeheund, Egs. (19) and (23) can be
used to shw that

N N
Elg] = i§12Ii + %(ZJi,j -Kij), (26)

where
l; EJ'drlC”T(rl)HlC”u(rl), (27a)
Jii E_[drldrz ¢T(r1)¢§(rz)r—lfp.(rl)qﬂj(rz), (27b)

and
. . 1

Kii EIdrldrl(P.(r1)¢j(r2)r—12§0|(r2)¢7j(r1)- (27c)

The first two integrals are the same as encounterediglad. Eqgs. (14) and (17). The last one is
new and is called amxchange integral Note that in the case where the orbital functions are the
same,K; ; = J;; and the contribtion to the energy bound is identical to what was found for
helium.

Finally, if we vary the orbital functions as we did for helium and set the first oate-v
tion to zero, we obtain the following equations:
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Fiqo,(ri):e‘iqa,(ri), i :1,...,N (28)
where
Fi=-202-2 4500 -K)) (29)
2 M
with
« 1
Jig(ry) = ﬂ(ri)jdfz coj(rz)r—lzcoj(rz) (30)
and
. 1
Kig(ry) = fﬂj(rl)J'drzfo,-(fz) " @ (ra), (31)

F is known as the Fock operator.

Equations (28)(31) generalize the Hartree-Fock equations obtained for heliume.abo
They suffer from the same problem, namelyey are self-consistent equations, and thedeive
potential terms require us to kmdhe orbitals. As with helium, this is dealt with iteragly. In
practice, the Fock orbitals are expressed as linear combinations of Slater orbitals, with adjustable
coeficients and exponential parameters which are then determaredianally This scheme

was devdoped by Roothan, and hence, the method is sometimes called the Hadkee-F
Roothan method.
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Figure 8-1. The ionization energies of neutral atoms of hydrogen through krypton plotted versu
atomic number. The dots connected by straight lines are experimental data and the crosses ar
calculated according to Koopmans® theorem.

From McQuarrie, Quantum Chemistpy310.

Fdl 2003



